Системная плата: структура, функции, разновидности, размеры. Функции материнской платы Уход за материнской платой

Системная плата является основной в системном блоке. Она содержит компоненты, определяющие архитектуру компьютера:

    центральный процессор;

    постоянную (ROM ) и оперативную (RAM ) память,кэш-память ;

    интерфейсные схемы шин;

    гнёзда расширения;

    обязательные системные средства ввода-вывода и др.

Системные платы исполняются на основе наборов микросхем, которые называются чипсетами (ChipSets). Часто на системных платах устанавливают и контроллеры дисковых накопителей, видеоадаптер, контроллеры портов и др. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

IV. Интерфейсы вычислительных систем

Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter - между, и face - лицо).

Если интерфейс является общепринятым, например, утверждённым на уровне международных соглашений, то он называется стандартным .

Интерфейс - это аппаратное и программное обеспечение (элементы соединения и вспомогательные схемы управления, их физические, электрические и логические параметры), предназначенное для сопряжения систем или частей системы (программ или устройств). Под сопряжением подразумеваются следующие функции:

    выдача и прием информации;

    управление передачей данных;

    согласование источника и приемника информации.

В связи с понятием интерфейса рассматривают также понятие шина (магистраль) - это среда передачи сигналов, к которой может параллельно подключаться несколько компонентов вычислительной системы и через которую осуществляется обмен данными. Очевидно, для аппаратных составляющих большинства интерфейсов применим термин шина , поэтому зачастую эти два обозначения выступают как синонимы, хотя интерфейс - понятие более широкое.

Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Портами также называют устройства стандартного интерфейса : последовательный, параллельный и игровой порты (или интерфейсы).

К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства - принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы .

Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной или материнской (MotherBoard). А контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения (DаughterBoard - дочерняя плата) и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot - щель, паз).

Для интерфейсов , обеспечивающих соединение "точка-точка" (в отличие от шинных интерфейсов ), возможны следующие реализации режимов обмена: дуплексный, полудуплексный и симплексный. К дуплексным относят интерфейсы , обеспечивающие возможность одновременной передачи данных между двумя устройствами в обоих направлениях. В случае, когда канал связи между устройствами поддерживает двунаправленный обмен, но в каждый момент времени передача информации может производиться только в одном направлении, режим обмена называется полудуплексным. Важной характеристикой полудуплексного соединения является время реверсирования режима - то время, за которое производится переход от передачи сообщения к приему и наоборот. Если же интерфейс реализует передачу данных только в одном направлении и движение потока данных в противоположном направлении невозможно, такой интерфейс называют симплексным.

Важное значение имеют также следующие технические характеристики интерфейсов :

    вместимость (максимально возможное количество абонентов, одновременно подключаемых к контроллеру интерфейса без расширителей);

    пропускная способность или скорость передачи (длительность выполнения операций установления и разъединения связи и степень совмещения процессов передачи данных);

    максимальная длина линии связи;

    разрядность;

    топология соединения.

По функциональному назначению можно выделить системные интерфейсы (интерфейсы , связывающие отдельные части компьютера как микропроцессорной системы) и интерфейсы периферийных устройств.

Системный интерфейс выполняется обычно в виде стандартизированных системных шин. Однако в последнее время наметились тенденции внедрения концепций сетевого взаимодействия в архитектуру системных интерфейсов .

Различают два класса системных интерфейсов : с общей шиной (сигналы адреса и данных мультиплексируются) и с изолированной шиной (раздельные сигналы данных и адреса). Прародителями современных системных шин являются:

    Unibus фирмы DEC (интерфейс с общей шиной ),

    Multibus фирмы Intel (интерфейс с изолированной шиной ).

Системные интерфейсы для ПК на основе Intel-386 и Intel-486

Первым стандартным системным интерфейсом для ПК на основе ЦП IA-32 следует считать ISA (Industry Standard Architecture - Архитектура промышленного стандарта). ISA представляет собой шину , используемую в IBM PC-совместимых ПК для обеспечения питания и взаимодействия плат расширения с системной платой, в которую они вставляются. Полное описание шины , включая ее временные характеристики, было издано в виде стандарта IEEE P996-1987.

Первый вариант этой архитектуры для ЦП 8086/8088 с тактовой частотой 4,77 МГц представлял собой 62-контактную шину с 8 линиями данных, 20 линиями адреса, сигналами для прерываний и запросов и подтверждения DMA, а также линиями питания и сигналами синхронизации.

Появление 32-битных процессоров Intel-386 и Intel-486 показало, что быстродействие магистрали ISA является сдерживающим фактором на пути повышения производительности компьютеров. В 1989 году группой компаний (Compaq, Hewlett Packard, NEC и др.) было предложено эволюционное развитие архитектуры ISA - шина EISA (Extended ISA). С одной стороны, EISA имела все преимущества высокопроизводительной 32-битной шины, а с другой - была полностью совместима с ISA "сверху вниз" и не требовала перехода на новую элементарную базу.

Альтернативная системная архитектура MCA (Micro Channel Architecture - Микроканальная архитектура) была предложена IBM в 1987 году в серии ПК PS/2. Основным достоинством MCA по сравнению с ISA было увеличение разрядности шины данных до 32 бит.

MCA не зависит от типа процессора и является полностью асинхронной. Эта магистраль, кроме ПК IBM PS/2, применялась также в рабочих станциях IBM RS/6000 и в высокопроизводительных компьютерах серии Power Parallel SP2 (например, Deep Blue).

Для магистрали MCA предусмотрена автоматическая конфигурация системы. При этом пользователь может изменять и назначать приоритеты различных устройств. Для увеличения скорости передачи в режиме DMA используется специальный блочный режим (burst mode).

В типичной системе на основе Intel-386/486 (рис. 14.1 ) использовались раздельные шины для памяти и устройств ввода-вывода, что позволяло максимально задействовать возможности оперативной памяти и обеспечивало максимальную скорость работы с ней. Однако в таком случае устройства, подключенные через описанные системные интерфейсы , не могут достичь скорости обмена, сравнимой с процессором. В основном это требуется для видеоадаптеров и контроллеров накопителей. Для решения проблемы была предложена архитектура на основе локальных шин (рис. 14.2 ), которые непосредственно связывали процессор с контроллерами периферийных устройств.

Рис. 14.1. Типичная система с низкоскоростной шиной устройств ввода-вывода

Рис. 14.2. Система с архитектурой локальной шины (VLB)

Наиболее распространенными локальными шинами считались VLB и PC I . VLB (VESA Local Bus) представляет собой расширение шины процессора без промежуточных буферов, что резко ограничивает ее нагрузочную способность (2-3 устройства). VLB имеет 32-разрядную шину данных и 32-разрядную шину адреса. Достоинством VLB является простота и низкая стоимость. Однако широкого применения эта разработка не нашла, т.к. была вытеснена шиной PCI .

Интерфейс PCI

Доминирующее положение на рынке ПК занимают системы на основе шины PCI (Peripheral Component Interconnect - Взаимодействие периферийных компонентов). Этот интерфейс был предложен фирмой Intel в 1992 году (стандарт PCI 2.0 - в 1993) в качестве альтернативы локальной шине VLB/VLB2. Она не является шиной процессора. Поскольку шина PCI не ориентирована на определенный процессор, ее можно использовать для других процессоров. Шина PCI была адаптирована к таким процессорам, как Alpha, MIPS, PowerPC и SPARC. Именно PCI сменила NuBus на платформе Apple Macintosh.

Шины ISA , EISA или MCA могут управляться шиной PCI с помощью моста сопряжения (рис. 14.3 ), что позволяет устанавливать в ПК платы устройств ввода-вывода с различными системными интерфейсами .

Рис. 14.3. Система на основе PCI

PCI поддерживает процедуру прямого доступа к памяти ведущего устройства на шине (bus mastering DMA). Процессор может функционировать параллельно с периферийными устройствами, являющимися ведущими на шине .

Кроме того, платы PCI поддерживают:

    автоматическую конфигурацию Plug&Play (не требуют назначения адресов расширений BIOS вручную);

    совместное использование прерываний (когда один и тот же номер прерывания может использоваться разными устройствами);

    контроль четности сигналов шины данных и адресной шины ;

    конфигурационную память от 64 до 256 байт (код производителя, код устройства, код класса (функции) устройства и др.).

Персональные компьютеры могут иметь две или больше шин PCI . Каждой шиной управляет свой мост PCI , что позволяет устанавливать в компьютер больше плат PCI (вплоть до 16 - ограничение адресации).

Порт AGP

С повсеместным внедрением технологий мультимедиа пропускной способности шины PCI стало не хватать для производительной работы видеокарты. Чтобы не менять сложившийся стандарт на шину PCI , но, в то же время, ускорить ввод-вывод данных в видеокарту и увеличить производительность обработки трехмерных изображений, в 1996 году фирмой Intel был предложен выделенный интерфейс для подключения видеокарты - AGP (Accelerated Graphics Port - высокоскоростной графический порт). Впервые порт AGP был представлен в системах на основе Pentium II. В таких системах чипсет был разделен на два моста (рис. 14.3 ): "северный" (North Bridge) и "южный" (South Bridge). Северный мост связывал ЦП, память и видеокарту - три устройства в системе, между которыми курсируют наибольшие потоки данных. Таким образом, на северный мост возлагаются функции контроллера основной памяти, моста AGP и устройства сопряжения с фасадной шиной процессора FSB (Front-Side Bus). Собственно мост PCI , обслуживающий остальные устройства ввода-вывода в системе, в том числе контроллер IDE (PIIX), реализован на основе южного моста.

Одной из целей разработчиков AGP было уменьшение стоимости видеокарты, за счет уменьшения количества встроенной видеопамяти. По замыслу Intel, большие объемы видеопамяти для AGP-карт были бы не нужны, поскольку технология предусматривала высокоскоростной доступ к общей памяти.

Главная обработка трехмерных изображений выполняется в основной памяти компьютера как центральным процессором, так и процессором видеокарты. AGP обеспечивает два механизма доступа процессора видеокарты к памяти:

    DMA (Direct Memory Access) - обычный прямой доступ к памяти. В этом режиме основной памятью считается встроенная видеопамять на карте, текстуры копируются туда из системной памяти компьютера перед использованием их процессором видеокарты;

    DIME (Direct In Memory Execute) - непосредственное выполнение в памяти. В этом режиме основная и видеопамять находятся как бы в общем адресном пространстве. Общее пространство эмулируется с помощью таблицы отображения адресов GARP (Graphic Address Remapping Table) блоками по 4 Кбайт. Таким образом, процессор видеокарты способен непосредственно работать с текстурами в основной памяти без необходимости их копирования в видеопамять. Этот процесс называется AGP-текстурированием.

Чтобы извлечь выгоду из применения порта AGP , помимо требуемой аппаратной поддержки (т.е. графического адаптера AGP и системной платы), необходимую поддержку должны обеспечивать операционная система и драйвер видеоадаптера, а в прикладной программе должны быть использованы новые возможности порта AGP (например, трехмерное проецирование текстур).

PCI Express

Интерфейс PCI Express (первоначальное название - 3GIO 1) ) использует концепцию PCI , однако физическая их реализация кардинально отличается. На физическом уровне PCI Express представляет собой не шину , а некое подобие сетевого взаимодействия на основе последовательного протокола. Высокое быстродействие PCI Express позволяет отказаться от других системных интерфейсов (AGP , PCI ), что дает возможность также отказаться от деления системного чипсета на северный и южный мосты в пользу единого контроллера PCI Express .

Одна из концептуальных особенностей интерфейса PCI Express , позволяющая существенно повысить производительность системы, - использование топологии "звезда". В топологии "шина" (рис. 14.5а ) устройствам приходится разделять пропускную способность PCI между собой. При топологии "звезда" (рис. 14.5б ) каждое устройство монопольно использует канал, связывающий его с концентратором (switch) PCI Express , не деля ни с кем пропускную способность этого канала.

Рис. 14.5. Сравнение топологий PCI и PCI Express

Системная (материнская) плата - основа электронной составляющей компьютера. Она крепится к корпусу. Затем на материнскую плату устанавливается процессор, память, и многое другое. Т.е. она как бы соединительный элемент, база, к которой подключаются все остальные устройства. На материнской плате обычно установлены микросхемы, отвечающие за работу с процессором, памятью и другими устройствами (т.н. чипсет). Вот почему выбор материнской платы очень важен и с точки зрения производительности компьютера, и с точки зрения его надежности.

Из производителей материнских плат самыми качественными я бы назвала Intel и ASUSTeC. Но даже и у них не без недостатков. Например, у Intel были проблемы с совместимостью, а у ASUS последнее время (возможно, в связи с переносом части производства в Китай) начали появляться проблемы с надежностью.

А вообще мамки от Intel или ASUS можно покупать, не задумываясь - любая модель будет работать. С гарантией лучше у Intel.

Второй эшелон производителей материнских плат - Gigabyte, Abit, MSI, ECS, FoxConn. Они тоже вполне качественные, но отличаются от первого эшелона тем, что есть модели удачные, а есть не очень, удачная же модель по качеству может «дать фору» любой другой.

Материнские (системные) платы характеризуются:

  • - форм-фактором (конструктив для установки в корпус - ATX, microATX, Baby AT, BTX и т.п.)
  • - чипсетом (производителем и типом микросхем чипсета, на котором сделана материнская плата).
  • - типом поддерживаемых процессоров и разъемом под проц (LGA775, Socket 478 и т.п.)
  • - типом поддерживаемой памяти и разъемами под оперативную память
  • - типом и кол-вом стандартных составляющих (контроллеры IDE, порты USB и т.п.)
  • - наличием дополнительно установленных элементов - звук, графика, сеть и т.п.
  • - и, конечно же, фирмой-производителем и качеством изготовления

БАЗОВАЯ СИСТЕМА ВВОДА - ВЫВОДА - BIOS

BIOS (англ. Basic Input-Output System -- базовая система ввода-вывода, БСВВ) -- небольшая программа, находящаяся на ПЗУ и отвечающая за самые базовые функции интерфейса и настройки оборудования, на котором она установлена. Наиболее широко среди пользователей компьютеров известна BIOS материнской платы, но BIOS присутствуют почти у всех компонентов компьютера: у видеоадаптеров, сетевых адаптеров, модемов, дисковых контроллеров, принтеров.

Главная функция BIOS материнской платы -- инициализация устройств, подключенных к материнской плате, прямо после включения питания компьютера. BIOS проверяет работоспособность устройств (т. н. самотестирование, англ. POST - Power-On Self Test), задает низкоуровневые параметры их работы (например, частоту шины центрального микропроцессора), и после этого ищет загрузчик операционной системы (англ. Boot Loader) на доступных носителях информации и передает управление операционной системе. Операционная система по ходу работы может изменять большинство настроек, изначально заданных в BIOS. Многие старые персональные компьютеры, которые не имели полноценной операционной системы, либо её загрузка не была необходимой пользователю, вызывали встроенный интерпретатор языка Бейсик. В некоторых реализациях BIOS позволяет производить загрузку операционной системы через интерфейсы, изначально для этого не предназначенные, в том числе USB и IEEE 1394. Также возможна загрузка по сети (применяется, например, в т. н. «тонких клиентах»).

Также BIOS содержит минимальный набор сервисных функций (например, для вывода сообщений на экран или приёма символов с клавиатуры), что и обусловливает расшифровку её названия: Basic Input-Output System -- Базовая система ввода-вывода.

В некоторых BIOS"ах реализуется дополнительная функциональность (например, воспроизведение аудио-CD или DVD-дисков), поддержка встроенной рабочей среды (например, интерпретатор языка Basic) и др.

Материнская («материнка»/Motherboard), или, по-другому, системная плата - это неотъемлемая часть персонального компьютера. Своим внешним видом она напоминает обычную текстолитовую пластину, где в большом количестве расположились медные проводники, разъёмы, интерфейсы и прочие детали. Если выражаться сухим официальным языком, то системная плата - это главная сборочная единица.

В её разъёмы и интерфейсы устанавливаются все комплектующие персонального компьютера: главный процессор, платы расширения, видеокарта или карты, оперативная память, а также винчестер и другие накопители/считыватели информации.

Кроме того, системная плата - это некий проводник для внешних манипуляторов и служебной периферии. К различным разъёмам в задней части материнки подключается мышка, клавиатура, принтеры, монитор, сканеры, коммуникационное оборудование и другие устройства.

Для того чтобы всё это разнообразие работало как надо, необходим источник вторичного питания, то есть плата системного блока должна быть подключена к этому источнику посредством оригинального разъёма. Такие интерфейсы в большинстве своём оснащаются специальной «защитой от дурака», где приёмник имеет пластиковые ключи и вставить его можно исключительно одним, правильным, образом. Схожие принципы подключения имеют и другие разъёмы, то есть производитель предусмотрительно позаботился о том, чтобы дорогостоящие компоненты не вышли из строя из-за неправильного подключения. Такими особенностями отличаются многие именитые системные платы: Asrock, MSI, «Гигабайт», «Асус» и другие.

Форм-факторы материнской платы

Форм-фактор материнки определяет точки крепежа к системному блоку. Кроме того, разные типы плат имеют отличительное расположение разъёмов питания, количество интерфейсов для подключения периферии и внутренних компонентов, а также их местоположение. Всего можно начитать три основных типа материнок. Практически все бренды, которые, что называется, на слуху, полностью поддерживают эти стандарты, то есть системные платы MSI, «Асус», «Самсунг», «Гигабайт» Asrock и т. п.

Форм-факторы:

  1. Мини-ITX . Наименьший размер платы с минимальным числом интерфейсов и чаще всего с уже интегрированным процессором (бюджетный вариант).
  2. Микро-ATX . Характеристика системной платы определяется как средняя по функциональности. Отличается приемлемыми размерами и считается оптимальным вариантом для домашнего персонального компьютера, пусть и с небольшим набором интерфейсов для подключения сторонней периферии. Чаще всего на борту такой материнской платы устанавливается чипсет с некоторыми ограничениями, но они не критичны для полноценной работы именно домашнего ПК.
  3. Standart-АТХ . Самый большой размер из группы с полнофункциональным набором чипсетов. Имеет достаточное количество интерфейсов для полноценной работы со всевозможной периферией. Отличается удобным и беспроблемным монтажом наряду с широкими возможностями подключения.

Обязательно нужно учитывать форм-фактор материнки, равно как и её размер, если вы самостоятельно комплектуете системный блок. Материнская плата типа мини-ITX может быть установлена в любой корпус, а вот остальные типы должны соответствовать размерам системного блока.

Разъёмы для процессоров («Сокет»/Socket)

Рассмотрим некоторые особенности разъёмов под процессоры. По большому счёту, системная плата - это вещь индивидуальная для каждого процессора и наоборот. Поэтому следует обязательно учитывать характеристики этого разъёма при выборе комплектующих, а именно процессора, для вашего компьютера.

Типовой ассортимент интерфейсов «Сокет» довольно велик и для каждого набора чипсетов подойдёт только свой тип. К примеру, системная плата Gigabyte GA с набором AMD имеет маркировки FX2, АМ3 и АМ3+. То есть, купив любой процессор с одной из этих «Сокет»-пометок, вы легко подключите его на эту материнскую плату. То же самое и с конкурентами из «Интел»: маркировки LGA 1150 и 1155 позволят вам выбрать нужный набор чипсетов, к примеру, под системные платы Samsung или «Асус».

БИОС (BIOS)

Далее мы рассмотрим отличительные черты каждой материнки. Неважно, какой у вас набор - первая или вторая системная плата, старая или новая и т. п. На ней в любом случае будет находиться микросхема БИОС для базовой систематизации ввода и вывода (BIOS - Basic Input-Output System).

Любая системная плата (Gigabyte, «Асус», «Самсунг», MSI и другие) несёт в себе несколько критичных подсистем, которые должны быть корректно настроены. Некоторый функционал может быть отключён, если, к примеру, вам не нужен встроенный графический ускоритель, потому как на борту установлена внешняя видеокарта.

Все настройки БИОСа сохраняются в специальном чипе-CMOS (о нём чуть ниже). Это своего рода запоминающее устройство «на века», работающее на литиевом элементе. Даже если вы на очень длительный срок выключите компьютер, данные в CMOS будут сохранены. В случае необходимости можно «грубо» сбросить все настройки, вынув батарейку из-под чипа. Этот момент нельзя назвать критичным, потому как все необходимые комплектующие для загрузки компьютера типа жёсткого диска или оперативной памяти определяются автоматически, - по крайней мере, в современных системах (после 2006 года). Настроенные ранее дата и время, естественно, сбросятся.

Микросхема CMOS

Практически любая системная плата (ASUS, «Гигабайт», MSI и другие) содержит в себе микросхему CMOS, запоминающую все изменения, внесённые в БИОС. Сам по себе чип потребляет крайне малый ток - чуть меньше микроампера, поэтому заряда батареи с лихвой хватает на год, а то и на несколько лет.

Иногда, если элемент полностью сел, компьютер может отказываться загружаться. Многие мастера-новички в этом случае сразу грешат на системную плату. Для того чтобы сразу исключить эту возможную причину (после длительного простоя компьютера), нужно вынуть аккумуляторный элемент из-под чипа CMOS и заново запустить систему. Если компьютер запустился или начал проявлять какие-то признаки жизни, то проблема была именно в севшей CMOS-батарейке.

Также нелишним будет заметить, что на элементе можно увидеть маркировку, где первые две цифры указывают диаметр батареи, а две следующие - ёмкость. Маркировкой CMOS-батареи должна оснащаться любая «уважающая себя» системная плата (Gigabyte, MSI, «Асус», «Самсунг» и т. д.). Если вы её не встретили - это повод насторожиться и усомниться в оригинальности и девственности купленного продукта. Чем больше ёмкость батареи, тем дольше будет работать элемент и тем он толще. Стандартная комплектация материнских плат чаще всего включает в себя аккумулятор типа 2032, то есть батарея с диаметром 20 мм и ёмкостью 32 мАч. Несколько реже можно встретить более скромные элементы вроде 2025.

Интерфейс IDE

Следующая не менее важная часть, которой оснащается каждая системная плата (ASUS, MSI, «Гигабайт», Asrock и другие), это интерфейсы для работы с жёсткими накопителями и считывателями данных, то есть в большинстве случаев с винчестерами, ДВД-приводами и другими носителями информации.

Домашние и офисные персональные компьютеры используют для этих случаев два основных интерфейса - это IDE и SATA. Разъём IDE (Integrated Drive Electronics) представляет собой 40-контактный приёмник и способен работать с жёстким диском или ДВД-приводом через гибкий ленточный кабель. Сегодняшние реалии заставляют потихоньку отказываться от интерфейса такого типа, но тем не менее его всё ещё можно встретить на некоторых материнских платах (чаще всего MSI и «Асус») для возможности подключения старых винчестеров и приводов.

Так же, как и в случае с разъёмом под блок питания, IDE-интерфейс имеет «защиту от дурака», то есть подключить его неправильно нельзя. Старые системные платы оснащались парой таких приёмников, то бишь первичным и вторичным (primary и secondary соответственно). Чаще всего жёсткий диск подключали к первичному контакту, а считывающие приводы - ко вторичному.

К каждому IDE-интерфейсу (каналу) можно подсоединить два внешний девайса - главный (master) и ведомый (slave). Выбор соответствующего параметра носителя выбирается с помощью специальных перемычек (джамперов) на самих устройствах. Причём если ошибочно выставить на одном канале двух «мастеров» или ведомых, то ни один из них работать не станет, поэтому всегда должен быть главный девайс и побочный.

Интерфейс SATA

Канал «САТА» - это последовательный набор интерфейсов, и в отличие от IDE, он позволяет работать на гораздо бОльших скоростях с подключаемыми устройствами. В настоящий момент он почти полностью исключил присутствие IDE-девайсов и продолжает развиваться дальше (SATA2, SATA3 и т. д.).

В зависимости от выбранного форм-фактора и производителя системной платы, на материнке может находиться разное количество разъёмов «САТА». Сегодняшняя стандартная комплектация подразумевает наличие как минимум четырех интерфейсов этого типа, в то время как более старые модели оснащались лишь двумя.

Интерфейс PS/2

Как уже говорилось выше, на системной плате находятся интерфейсы для работы с внешней периферией. Для подключения клавиатуры и манипуляторов типа «мышь» предназначены шестиконтактные приёмники PS/2 с соответствующими ключами и окрашенные в разные цвета. Этот момент также можно назвать «защитой от дурака», потому как каждый цвет соответствует типу подключаемого оборудования (мышь - зелёная, клавиатура - сиреневая), причём действует это в обе стороны, то есть, к примеру, на вашей мышке контакт должен быть зелёный.

Сразу стоит предупредить пользователей, что ни в коем случае нельзя подключать, равно как и отключать периферию от разъёма PS/2 во время работы компьютера, потому как это чревато выходом из строя не только клавиатуры или мыши, но и самой системной платы. Хорошо, если материнская плата оснащена группой предохранителей на этот случай, иначе может полететь вся система.

Такие чипы-предохранители имеют совсем небольшой номинал и легко горят при вышеописанных «переключательных» действиях. Для того чтобы проверить работоспособность предохранителя, его можно прозвонить обычным тестером. Если он вышел из строя, то его сравнительно легко (и дёшево) заменить, а впредь не рисковать, включая или отключая внешнюю периферию во время работы компьютера от порта PS/2. Также стоит отметить, что такими предохраняющими чипами оснащены далеко не все системные платы, поэтому обратить на этот момент внимание при покупке явно не лишний шаг.

Интерфейс USB

Среди прочих внешних разъёмов особое место отведено USB-интерфейсу (универсальная последовательная шина). Он состоит из четырёх линий: две отведены под питание, а другие под передачу данных. В отличие от привередливого порта PS/2, периферию, подключённую посредством USB-разъёма, можно менять, что называется, на ходу. Сам интерфейс появился достаточно давно и успел обзавестись некоторыми модификациями и улучшениями.

Возможность подключать и отключать девайсы с USB-разъёмом во время работы компьютера достигается за счёт специфичной конструкции интерфейса. Основные контакты питания находятся заметно ближе к срезу разъёма, в отличие от блока для передачи данных. То есть в момент коммутации питание начинает поступать в первую очередь, а отключается в последнюю.

Посредством USB-интерфейса можно подключить уйму периферийных устройств: принтеры, смартфоны, планшеты, сканеры, камеры и многое другое, а также привычные клавиатуру и мышь (имейте это в виду, если чипы-предохранители погорели на PS/2-портах).

Немногим ранее для подключения принтеров и сканеров использовались а ещё реже - последовательные СОМ-интерфейсы. Сегодня они практически не используются, и встретить их можно только на старых материнских картах. Но оно и к лучшему, потому как при подключении такого рода оборудования во время работы компьютера можно было спалить и принтер, и сам порт.

Интерфейсы PCI и PCI Express

Слоты PCI и PCI Express предназначены для плат расширения: сетевые адаптеры, коммуникаторы, модемы, видеокарты и т. п. Все видеокарты устанавливаются, как правило, в интерфейс типа PCI Express в силу его быстродействия. Раньше для работы с графическими ускорителями использовался разъём типа AGP, но он морально устарел, и увидеть его на современных материнских платах практически нереально.

Также стоит отметить, что со временем могут ослабевать, нарушая нормальную работу устройства. Быстрое «лечение» здесь одно - вытащить девайс из пазов, протереть контакты спиртосодержащим раствором и вставить обратно. Более кардинальный ремонт - это замена системной платы, но это необходимо в исключительных и крайне редких случаях.

Также следует знать, что претерпела несколько изменений в ходе совершенствования, и в зависимости от года выпуска материнской платы разъёмы могут отличаться и внешним видом, и разрядностью.

Модули оперативной памяти (ОЗУ)

В настоящее время можно встретить несколько видов оперативной DDR3 и DDR4. Морально устаревшие планки DDR1 практически не используются, увидеть их можно только на самых старых системных платах.

Отличается память друг от друга рабочей частотой, размерами, контактами и напряжением питания. Каждый отдельно взятый тип имеет специфический вырез (ключ) в нижней части, по которому и определяется вид оперативной памяти. Некоторые системные платы могут поддерживать сразу два вида планок, что очень удобно для последующего апгрейда.

Сами разъёмы оснащены специальными защёлками для надёжной фиксации на плате. Планки устанавливаются с определённым усилием, где после успешного монтажа будет слышан специфичный щелчок, - значит, модуль корректно сел (или вы сломали защёлку, слишком сильно надавив на неё).

Модули оперативной памяти, кроме полезных гигабайт, содержат небольшие микросхемы SPD, отвечающие за тайминг, то есть задержу данных для этого типа ОЗУ (оперативное запоминающее устройство). В БИОСе можно самостоятельно задать какие-то свои тайминги или оставить это на усмотрение самой планки. При разгоне оперативной памяти или всей системы в целом (оверклокинг) устанавливают максимально укороченную задержку.

Так же, как и в случае с PCI-слотами, модули ОЗУ могут начать некорректно работать, и для этого необходимо выполнить аналогичную процедуру, описанную в разделе выше и всё должно заработать как надо.

О сновным элементом для компьютера, ноутбука и даже планшета является системная плата, к которой уже следом подсоединены все остальные компоненты системы. Она можно так сказать координирует управление и дает возможность подключать дополнительное оборудование. Предназначена для управления и поддержания стабильной работы всех подключенных к ней элементов компьютера: процессор, оперативная память, жесткий диск, видео карта, управление охлаждением и питанием.

Из этой статьи вы узнаете о предназначении материнской платы, её компонентах и устройстве системной логики.


1. Для чего предназначена системная плата компьютера

Системная или, как ее еще именуют, материнская плата является основным аппаратным компонентом, снабженным магистралью обмена данными, разъемами посредствам которых устанавливается процессор и оперативная память, а также слотами для установки периферийных устройств.

Чипсет представляет собой набор микросхем, необходимый для того, чтобы системная плата осуществляла контроль над каждым процессом, происходящим внутри системного блока. Чипсет оказывает непосредственное влияние на наиболее важные показатели материнской платы, к числу которых относится скорость передачи данных, поддерживаемые модели процессоров и т. д.

Главными составляющими любого чипсета являются так называемые «мосты», представляющие собой специальные микросхемы. Оба «моста» снабжены своим четко очерченным кругом задач, так, например, «северный мост» обеспечивает связь между процессором, оперативной памятью и системной шиной AGP, тогда как «южный мост» взаимодействует с шиной ввода-вывода PCI и с множеством подключенных к компьютеру периферийных устройств.

2. Форм-факторы и размеры системных плат

Форм-фактор системной платы является неким стандартом, определяющим её размеры, место крепежа к корпусу компьютера, разъем для монтажа блока питания, расположение на плате шинных интерфейсов, различных портов и слотов, необходимых для установки оперативной памяти, а также сокет ЦП. Последние версии форм-фактора определяют и требования, предъявляемые к системе охлаждения ПК. Выбирая тот или иной элемент компьютера, следует помнить о том, что его корпус должен соответствовать форм-фактору системной платы.

На данный момент преобладающими являются четыре типоразмера системных плат: AT, ATX, LPX, NLX. Помимо вышеуказанных типоразмеров существуют и уменьшенные их варианты: Baby-AT, Mini-ATX, microATX, microNLX. Кроме того, относительно недавно спецификация microATX была пополнена новым форм-фактором - FlexATX. Каждая из названных спецификаций, определяет форму и габариты материнской платы, а также особенности корпуса и размещение компонентов на ней.

Форм-фактор ATX является наиболее востребованным большинством современных ПК, используемых в офисах и в домашних условиях.

Данный стандарт является разработкой компании Intel, которая в 1995 году вытеснила популярный на тот момент стандарт АТ, окончательно сложивший свои «полномочия» лишь в 2000 году.

Такие же стандарты, как microATX, flexATX, mini-ITX не лишены основных характеристик форм-фактора ATX, изменениям подвергаются только размеры самой платы.

Форм-фактору АТХ удалось пережить неудачную попытку компании Intel в 2003 году «запустить» форм-фактор BTX, который был разработан для повышения КПД во время охлаждения системного блока. Но по причине тотального стремления уменьшить выделение тепла компонентами компьютеров, компании пришлось отказаться от дальнейшей поддержки BTX.

ATX определяется:

Геометрическими размерами системных плат;

Общими требованиями относительно положения разъёмов на корпусе;

Электрическими характеристиками блока питания;

Положением блока питания;

Геометрическими размерами блока питания;

Формой и положением ряда разъёмов.

4. Форм-фактор microATX

Стандарт microATX представляет собой ответвление форм-фактора АТХ, которое было разработано корпорацией Intel в 1997 году. Независимо от того, что у форм-фактора microATX довольно солидный возраст, он находит широкое применение и сегодня.

Появление вышеуказанного стандарта связано с необходимостью уменьшить стоимость получаемых на выходе компьютеров. Добиться снижения стоимости удалось благодаря уменьшению габаритов системной платы, что оказало непосредственное влияние на размеры системного блока. Поскольку уменьшенный корпус является причиной пониженной вентиляции, зачастую форм-фактор microATX рассчитан лишь на использование в нетребовательной к производительности персонального компьютера среде.

5. Гнезда для процессора на материнской плате

Материнская плата предполагает подключение всех внутренних компонентов, независимо от того процессор это, оперативная память с контроллерами или же всевозможные периферийные устройства.

Чтобы вышеуказанные компоненты были объединены в единое целое, системная плата снабжена специальными гнездами, именуемыми слотами, сокетами, коннекторами. Все имеющиеся на плате гнезда различны по форме.

Сокет процессора является самым крупным на материнской плате разъемом, а потому обнаружить его не составляет труда, при этом форма слота варьируется в зависимости от разновидности процессора. Исходя из этого, становится ясно, что в гнездо можно устанавливать лишь совместимую с ним модель процессора. Иначе раньше штырьки, посредствам которых процессор устанавливается в слот погнутся или того хуже – сломаются. Хоть и в нынешнее время штырки находятся непосредственно в сокете материнской платы, а не на процессоре нужно быть осторожным при установке процессора в гнездо.

Процессоры, выпускаемые различными торговыми марками, отличаются стандартом гнезда, более того, даже выпущенные в разное время процессоры одного производителя могут быть различны по формату сокета.

6. Наборы микросхем системной логики (Intel / AMD)

Микросхемы системной логики предназначены для стабилизации работы всех остальных компонентов системы, по этой причине производителями чипсетов должны предлагаться лишь те решения, которые поддерживаются самыми распространенными технологиями.

Еще в 80-х годах компания Intel считалась разработчиком отдельных компонентов для системных плат и лишь в 1992 году, компании удалось собрать микросхемы системной логики, внедренные в 486 процессор, кодовое название которого 420TX– Saturn. Годом позднее, к моменту выхода одного из первых процессоров из семейства Pentium, компания владела уже полностью готовой для него системной логикой 430LX – Mercury. Огромного успеха Intel добился после выпуска чипсета 430FX, более известного как Triton.

Как известно, первые процессоры, выпускаемые AMD, являлись точными копиями процессоров компании Intel. Перейти к производству собственных разработок они решили только в 1999 году, представив публике образцы под названием Athlon и Duron, устанавливаемые лишь в новый разъем Socket A.

7. Архитектура материнской платы (северный/южный мост)

Основной составляющей материнской платы являются микросхемы системной логики, задача которых сводится к обеспечению стабильного взаимодействия ЦПУ с ОЗУ и контроллерами периферийных устройств. Составляет набор системной логики два чипсета, именуемых как «северный» и «южный мост».

Задачи «северного моста» сводятся к обмену данными посредствам оперативной памяти и видеосистемы. К задачам «южного моста» можно отнести обеспечение нормального функционирования иного рода устройств (жестких дисков, оптических накопителей), устройств, интегрированных в материнскую плату (аудиосистема, сетевое устройство) и устройств ввода/вывода.

8. Интегрированные устройства (Ethernet, audio, video)

В настоящий момент состав материнских плат стал пополняться устройствами, которые до недавнего времени являлись отдельными платами. Данное решение было принято лишь для удобства пользователя, поскольку приобретая одну системную плату, покупатель обзаводится и несколькими интегрированными в неё устройствами.

Большинство описываемых устройств являются контроллерами и кодеками (небольшими специализированными микросхемами чипсета), расположенными на системной плате.

Примером служат некоторые из них:

Звуковая карта . С недавних пор этот компонент является обязательной составляющей каждой материнской платы. В основном за обработку звука отвечает небольшая микросхема-кодек.

Сетевая плата . Данный компонент является встроенным контроллером, который давно заменил модем. Зачастую материнская плата снабжена контроллером, частота которого — 10/100 Мбит, есть варианты и с 1000 Мбит.

Графическая карта . Некоторые материнские платы наделены встроенной видеокартой, по мощности порой не уступающей отдельным видеокартам низшей ценовой категории.

9. Слоты расширения и шины (pci, agp, pci-express и т.д.)

Чаще всего на материнских платах имеются слоты расширения одного или нескольких типов, которые различны по таким параметрам, как пропускная способность, параметры электропитания и т.д., а потому не каждая из них подойдет для установки видеокарты. При покупке видеокарты необходимо удостовериться соответствует ли она имеющимся в системе разъемам.

За последнее время безнадежно устарели такие слоты расширения, как ISA и VESA Local Bus, а также утратили свою актуальность совместимые со слотами PCI и AGP видеокарты. Современные графические процессоры перешли на использование лишь одной разновидности интерфейса, именуемой PCI Express.

Небольшое количество производимых сегодня системных плат все же лишено слотов PCI Express, а потому если используемая вами система снабжена AGP видеокартой, модифицировать её посредствам замены некоторых элементов не получится, придется менять всю систему.

10. Технические характеристики материнской платы

Для того чтобы материнская плата была подобрана верно, необходимо брать в расчет конфигурацию компьютера и характеристики самой платы, такие как например:

Чипсет (северный и южный мост), который отвечает за работу процессора с оперативной памятью, видеокартой и т.д. Особого внимания требуют следующие параметры чипсета: фирма-производитель, модель, список поддерживаемых процессоров и частота шины.

Данный параметр представляет собой разъем, необходимый для установки процессора на материнскую плату. Процессоры, выпущенные различными фирмами-производителями, нуждаются в разных видах сокетов.

– стандарт, который определяет точные габариты системной платы, место крепежа ее к корпусу, а также то, каким образом на ней расположены порты, слоты и сокет процессора.

Слоты для ОЗУ, видеокарты и иного рода устройств. Покупая материнскую плату необходимо учитывать поддерживаемую ею частоту памяти, способ размещения и количество слотов, USB-выходов и плат расширения.

Интегрированная сетевая, звуковая и видеокарта.

11. Поддержка оперативной памяти

Прежде чем выбрать оперативную память, необходимо определить какой её тип поддерживается имеющейся у вас материнской платой, поскольку модулям одного типа памяти не удастся воспользоваться разъемами другого типа. Так на сегодняшний день наиболее известными являются следующие типы памяти:

DDR — На данный момент этот тип памяти считается устаревшим, а потому он практически не востребован.

DDR2 — довольно распространенный сегодня тип памяти, отличительной чертой его является выборка сразу 4-х бит данных за такт.

DDR3 — Несмотря на тот факт, что в настоящее время этот тип памяти является относительно новым, он позволяет производить выборку 8 бит информации за такт, затрачивая при этом на 40% меньше энергии, нежели DDR2.

12. Разъемы системной платы

Разъемы на материнской плате нужны не только для первичной сборки компьютера, но и для последующего апгрейда (улучшения) системы. Например, замена процессора на более производительный, увеличение объема оперативной памяти, улучшение видео адаптера или установка дополнительных плат расширений в виде каких-либо контроллеров. Все это можно поменять, просто вытащив из слота устаревший элемент и вставив в него новый.

Конструкция выпускаемых сегодня стандартных системных плат состоит следующих компонентов:

Сокет процессора. Данный компонент является специальным гнездом, предназначенным для установки центрального процессора.

Слоты расширения для ОЗУ. Число указанных слотов, в зависимости от модели системной платы, варьируется от 2-х до 8-ми.

Разъем, необходимый для установки блока питания. Данный компонент представляет собой разъем, посредствам которого подается электрический ток на каждый компонент ПК.

IDE-интерфейс, позволяющий подключить внутренний жесткий диск и оптический привод.

Чипсет. Благодаря этому компоненту обеспечивается взаимодействие центрального процессора с ОЗУ и устройствами ввода-вывода.

Интерфейсы типа SATA, выполняющие тот же перечень функций, что и IDE.

Разъемы для установки разнообразных периферийных устройств, таких как клавиатура и мышка, звуковые устройства, монитор, USB-устройства и сетевой кабель.

Слоты расширения PCI, посредствам которых подключаются звуковая и сетевая карта ПК.

Слоты PCI-Express x16, необходимые для подключения графических плат.

Слоты PCI-Express x1, предназначенные для установки Wi-Fi-карт, GSM-модемов и различных контроллеров.

Разъем для батарейки, хранящей настройки BIOS.

13. Шина процессора

Основой любого ПК является материнская плата и встроенный в неё процессор. Именно от этих двух компонентов зависит производительность всего компьютера. Для каждого устройства, такого как клавиатура, дисковод и т. д., на системной плате имеется специальная управляющая схема, именуемая адаптером или контроллером.

Каждый контроллер взаимодействует с процессором и ОЗУ посредствам системной магистрали передачи данных, именуемой также системной шиной. Также современные материнские платы, помимо системной шины, снабжены:

Шиной памяти, необходимой для обмена данными между процессором и ОЗУ;

Шиной кэш-памяти, используемой для обмена данными между процессором и кэш-памятью;

Шиной AGP, предназначенной для установки видеоадаптера;

Шиной ввода-вывода (интерфейсными шинами), служащими для подключения всевозможных периферийных устройств.

14. Шина памяти

Шина памяти используется в качестве средства передачи данных между процессором и ОЗУ. Данная шина взаимодействует с «северным мостом» или как его еще именуют — микросхема Memory Controller Hub. На скорость работы шины памяти непосредственное влияние оказывают: тип памяти и используемый набор микросхем. Желательно чтобы такие параметры, как частота шины памяти и скорость шины процессора совпадали.

Память, которая работает с частотой аналогичной частоте шины процессора, позволяет не размещать внешнюю кэш-память на материнской плате. По этой причине кэш-память II-го и III-го уровня была встроена в процессор. У многих довольно мощных процессоров, таких как, например Intel Pentium Extreme Edition, имеется встроенная кэш-память III-го уровня с объемом до 4 Мбайт, которая, в свою очередь, работает на полной частоте процессора. Однако более распространенные сегодня процессоры, которыми являются Core Duo и Core 2 Quad, i5, i7 пользуются кэш-памятью I-го и II-го уровня, III-го, из чего следует, что вскоре кэш III-го уровня станет более распространенным типом вторичной кэш-памяти.

15. Прерывание

Нередко во время работы компьютера возникают ситуации, которые требуют от процессора немедленного приостановления основной программы с целью последующей обработки событий, возникших в одном из устройств ПК. Для решения подобного рода проблем предусмотрен, так называемый, механизм прерываний.

Прерывание представляет собой приостановку выполнения приоритетной задачи ЦП для обработки события, поступившего от некоторого устройства.

Механизм прерываний включает в себя следующие действия:

Устройство, требующее вмешательства центрального процессора, посылает особый запрос на прерывание;

Данный запрос впоследствии проходит обработку посредствам контроллера прерываний;

Сигнал, подвергшийся обработке контроллером, снова поступает в распоряжение процессора, приостановившего выполнение первоначальной программы и обработавшего возникшее прерывание. После того, как необходимость в обработке прерывания исчезает, процессор принимается за выполнение основной программы;

В случае возникновения нескольких прерывании, предпочтение будет отдаваться прерыванию с высшим приоритетом.

Контроллер прерываний является микросхемой, выполняющей обработку сигналов на прерывание, поступающих от всевозможных устройств.

Все прерывания наделяются номером, который обозначается символом IRQ.

Раньше я вел очень активную жизнь: играл в теннис, футбол, занимался шахматами и стрельбой, участвовал в автогонках, соблазнял красивых девушек… Но все закончилось, когда сгорела материнская плата на компьютере!

Наверняка любой пользователь, даже самый безнадежный «чайник», когда-либо слышал это словосочетание – «материнская плата». И это неудивительно – ведь от качества и возможностей этого элемента компьютера во многом зависит надежность и эффективность работы ПК, а, следовательно, этот компьютерный термин пользуется большой популярностью.

Каждый компьютер – это сложное устройство, в котором расположено множество узлов и микросхем. Казалось бы, разместить их всех так, чтобы они друг другу не мешали и могли бы эффективно взаимодействовать – это непосильная задача для конструкторов. Но решение этой задачи было найдено – оказывается, достаточно разместить все самые важные микросхемы, в том числе, и процессор, на одной-единственной большой плате.

Итак, материнская плата компьютера (по-английски пишется, как motherboard, этот термин мы тоже будем употреблять в дальнейшем), также называемая системной платой – основное устройство персонального компьютера. Ее главное назначение – связывать и объединять в единое целое все узлы и компоненты компьютера. Многие узлы физически размещаются на motherboard, а другие связаны с ней при помощи кабелей.

Главные функции motherboard:

  1. Размещение основных узлов и систем ПК
  2. Интеграция основных узлов и систем ПК
  3. Снабжение питанием основных узлов и систем ПК

Какие устройства размещаются на материнской плате:

  • Разъем для процессора
  • Чипсет
  • Слоты расширения
  • Разъемы памяти
  • Разъемы для подключения дисководов
  • Порты
  • Микросхема BIOS
  • Сетевая карта (опционально)
  • Видеокарта (опционально)
  • Звуковая карта (опционально)

Материнская плата крепится при помощи специальных винтов в корпусе компьютера. На практике замена системной платы означает, по сути, и обновление всего компьютера.

Следует учесть, что форм-фактор, то есть стандартизированный типоразмер motherboard привязан к форм-фактору системного блока, и материнская плата, имеющая определенный форм-фактор, вряд ли встанет в системный блок, предназначенный для другого форм-фактора.

Пожалуй, самая известная функция motherboard – это размещение слотов для плат расширения, выводы которых располагаются в тыльной части системного блока. Наверняка, далеко не все пользователи занимались заменой самой motherboard в корпусе компьютера, а также модернизацией процессора, но большинству, наверное, известен процесс замены или добавления плат расширения в слоты на материнской плате. Кстати, материнская плата называется материнской именно по отношению к дочерним платам, то есть платам, расположенным в слотах расширения.

Значительное число современных плат содержит многие встроенные элементы, которые раньше могли работать только через слоты расширения – это видеокарта, сетевая карта, звуковая карта, и.т.д. Обычно это устройства начального уровня, очень дешевые и предназначенные для нетребовательных пользователей. Однако эти устройства, как правило, очень незначительно увеличивают стоимость всей системы и заодно освобождают слоты расширения для чего-то более важного. К тому же, наличие этих устройств не мешает пользователю произвести модернизацию системы, например, заядлый геймер всегда может поставить вместо простенькой «видяхи» последнюю версию навороченного трехмерного акселератора. При этом устройство, установленное в слот расширения, всегда будет иметь приоритет перед встроенным.

Пару слов стоит сказать о технологии изготовления материнских плат. Материалом для материнских плат обычно служит стеклотекстолит, на который нанесены проводящие дорожки из металла. Таких слоев текстолита в плате может быть несколько. Сверху плата покрыта диэлектрическим лаком, обычно зеленого цвета.

История системных плат

Идея единой платы для интеграции всех элементов завоевала себе место далеко не сразу. В первые годы существования ПК были широко распространены так называемые объединительные платы, то есть платы, на которых размещались не все функциональные блоки компьютера. Эти блоки размещались на разных платах, которые вставлялись в слоты расширения объединительной платы – это могли быть и чипсеты, контроллеры дисководов, портов и даже сам процессор. Но потом от подобной схемы пришлось отказаться (и первой пример этому подала фирма IBM) в связи с удешевлением интегрированных материнских плат современного типа, на которых размещались все компоненты, а также в связи с трудностями, которые возникали при модернизации компьютеров на объединительных платах.

В первых материнских платах современного типа, однако, процессор, как и память, были несъемными. Впоследствии появились разъемы для памяти и сокеты для процессоров. Это усовершенствование значительно упростило модернизацию компьютера.

Сначала среди системных плат был распространен форм-фактор AT, ведущий начало от материнских плат компьютеров архитектуры AT. Но платы подобного размера были очень большими, и поэтому чаще использовался форм-фактор Baby-AT.

Форм-факторы современных системных плат

На смену AT в середине 1990-х пришел форм-фактор ATX. В настоящее время форм-фактор AT и производные от него типы материнских плат практически не используются в современных ПК.

Преимущества, которые принес форм-фактор ATX по сравнению с AT:

  • Более удобные габариты, увеличение свободного места в корпусе.
  • Сократилось расстояние между платой и дисководами, что позволило уменьшить длину кабелей.
  • Сокет процессора расположен ближе к вентилятору системного блока, что позволяет улучшить охлаждение процессора.
  • Возможность управления питанием компьютера.
  • Питание процессора от системного блока без преобразователя напряжения.
  • Размещение портов на самой материнской плате.
  • Более удобное размещение разъемов для плат расширения.
  • Наличие единого контакта для кабеля питания

Форм-фактор ATX и производные от него форм-факторы mATX (micro ATX), mini-ATX и серверный форм-фактор EATX (Extended ATX) и сейчас являются наиболее распространенными в большинстве компьютеров.

Существует также более новый форм-фактор motherboard BTX, разработанный в 2003 г, однако низвергнуть ATX с пьедестала он так до сих пор и не смог.

Сравнительные габариты плат некоторых форматов (ДхШ, мм):

  • AT – 351 × 305
  • Baby AT – 330 x 216
  • EATX – 330 × 305
  • ATX – 305 × 244
  • miniATX – 284 × 208
  • mATX – 244 × 244
  • BTX – 325 x 267

Настройка системной платы

Как правило, для современной motherboard доступны не только такие функции, как апгрейд отдельных элементов, например, процессора, памяти и плат расширения, но и настройка основных параметров работы системной платы и процессора, таких, как частота работы системной шины и процессора, коэффициент умножения частоты, и.т.д.

Следует помнить, что настройка параметров motherboard – это очень деликатное дело и если вы не знаете всех тонкостей операции, которую вы собираетесь произвести, то имейте в виду, что неправильная настройка может обернуться неработоспособностью всей системы или ее отдельных элементов.

Настройка материнской платы обычно осуществляется через интерфейс программы BIOS Setup. Также настройка многих параметров может осуществляться и через специальные программы в Windows.

Заключение

В этой статье вы познакомились с понятием материнской (системной) платы, узнали, для каких целей она предназначена, какие компоненты на ней размещаются, как осуществляется настройка основных параметров motherboard, что такое форм-фактор системной платы, познакомились с историей развития системных плат в персональных компьютерах, а также с различными типами материнских плат.